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Matrix representation of the generators of symplectic algebras: 
11. The general case with explicit results for sp(6, R )  

E Chacon and M Moshinskyt 
Instituto de Fisica, UNAM, Apdo Postal 20-364, Mixico, D F  01000, Mexico 

Received 28 October 1986 

Abstract. One of the important problems in Lie algebras is to determine the matrix 
representation of their generators in a basis associated with a given irrep of the correspond- 
ing group. For the unitary and orthogonal groups these representations were obtained by 
Gelfand and Zetlin. In the present paper we give results of the same degree of generality 
for the symplectic Lie algebras sp(2d, R ) ,  where d is any integer, when the irreps are in 
the positive discrete series. The basis is constructed from powers of the raising generators 
acting on Gelfand states. Using the Dyson boson realisation of the generators of sp(2d, R ) ,  
and the result of Gelfand for unitary Lie algebras, the matrix representation of these 
generators was obtained in closed form. Explicit results are given for sp(6, R )  and we 
sketch their application to the symplectic model of the nucleus. 

1. Introduction 

In the present paper we wish to extend to the symplectic algebra sp(2d, R ) ,  where d 
is any integer, the methods for determining the matrix representation of their generators 
that were outlined in the first paper of this series for the case of sp(4, R )  i.e. when 
d = 2 (Castaiios and Moshinsky 1987). In this introduction we shall indicate how the 
matrix representation can be obtained in principle, leaving for the following sections 
the actual procedure employed using the Dyson boson realisation of sp(2d, R ) ,  as well 
as the discussion of its explicit application to sp(6, R )  and to the symplectic model of 
the nucleus. 

The set of d(2d  + 1) generators of sp(2d, R )  will be denoted by 

i , j = 1 , 2  , . . . ,  d (1.1) Bi = Bt. C{ Bb = BJ' 
V 11 

where in contrast to previous notation (Castaiios et a1 1982) we make use both of 
lower and upper indices. This would allow a discussion with different types of metric, 
which will be relevant in the applications to the sp(6, R )  of the symplectic model of 
nuclear collective motions. 

The commutation relations for the generators given in (1.1) are 

[ c{, C{,'] = ti's;. - c;&' 

[ C:, B:>.] = B:.Sf.+ B:i,S,J. 

(1.2a) 

(1.2b) 
(1.2c) 

I (1.2d) 
(1.2e) 

[BL, B;y,] =[BO, B'3' ]=  0 

I ,  [c;, ~ " 3  = - ~ J ' a j ' -  Bji'SJ' 

[Bv ,  Bt 13' ] =  Cj,Sj.+Cc:',Sl,+Cj,Si,+Cj.Sj, 
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4596 E Chacdn and M Moshinsky 

and thus we see that the C:, i, j = 1,2, . . . , d, are the generators of the u ( d )  subalgebra 
of sp(2d, R )  (Moshinsky 1968). 

The set of generators (1.1) can be divided into three subsets of raising, weight and 
lowering type which are separated below by semicolons: 

B i , C i i < j ;  C : ;  C l i > j ,  B’. (1.3) 

The lowest weight state associated with an irreducible representation of sp(2d, R )  in 
the positive discrete series is then characterised by a partition [ h l d h z d . .  . h d d ]  and it 
can be denoted by the ket Ihrd) ,  where i = 1, 2, . . . , d, which satisfies the equations 

B k l l  h i d )  = 0 Vk, 1 (1.40) 

c: 1 h i d )  = k > l  (1.4b) 

cf I h i d )  = h d - k + l , d  I h i d )  ( 1 . 4 ~ )  

We can obtain a complete, albeit non-orthonormal, basis associated with the irrep 
[ h l d  . . . h d d ]  of sp(2d, R )  ifwe apply to the lowest weight state I hid) the raising generators 
appearing in (1.3) before the first semicolon. We note that the application of powers 
of C:, i < j to 1 h r d )  will produce states associated with the irrep [hl,, . . . h d d ]  of U(d)  
(Moshinsky 1968) that would be linear combinations of the orthonormal ones intro- 
duced by Gelfand and Zetlin (Gelfand and Zetlin 1950, Moshinsky 1968). Thus in 
what follows we shall start not from the lowest weight state 1 hid) of (1.4) but from 
Gelfand states characterised by irreps of the chain 

k , l = l , 2  , . . . ,  d. 

U(d)  3 U(d - 1) 3 . .  .I U ( j )  2 . .  .I U(2) 3 U ( l )  (1.5) 

[ h l J h ,  ’ ’ * h,,l j = l , 2 , .  . . , d .  (1.6) 

which are associated with the partitions 

We shall denote the corresponding states by the kets 

I h,) i s j , j = l , 2  , . . . ,  d (1.7) 
where h,, are non-negative integers satisfying h ,  2 h,,-, 2 h,,,,, and, as mentioned 
above, these kets are orthonormal. 

The set of states associated with the irrep [ h l d .  . . h d d ]  of sp(2d, R )  in the positive 
discrete series can now be constructed by the application of powers of the raising 
generators BL to the states 1 hv) of (1.71, and thus we can denote them by the ket 
(Deenen and Quesne 1985) 

where N,,, i s j = 1, . . . , d are non-negative integers. 
From the Hermitian property (Castaiios et a1 1982) 

(Bi)+ = B” (1.9) 
and the commutation relations (1.2), it is clear that the states (1.8) are non-orthonormal 
but they provide a basis for the matrix representation of the generators of sp(2d, R )  
as indicated in the general type of analysis of Gruber and Klimyk (1984) and, specifically 
in the case of sp(4, R ) ,  in the previous paper of this series (Castaiios and Moshinsky 
1987). 

We proceed now to indicate how, in principle, one can obtain the matrix representa- 
tion of the generators for a basis associated with a given irrep [ h l d .  . . h d d ]  of sp(2d, RI.  
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If we denote by X any of d(2d  + 1) generators (1.1) of sp(2d, R ) ,  we will try to express 
its action on the ket 1 N,,  AI,) as a linear combination of these types of states, i.e. 

(1.10) 

Note that we use a round rather than an angular bracket on the left-hand side of the 
last term in (1.10) to emphasise that it is not the matrix element of X with respect to 
the states IN,,, h,,) but just a coefficient in the development of XI Nj, ,  h,,) in terms of 

x I N,, 9 h ,  ) = c I N L f h I) ( N ;, h L I x I N,, 9 h,, )* 
N , , h , ,  

I NL, h ; ) .  
When X = BL,, k s 1 = 1,2, . . . , d, we obviously have that 

( N I ,  + a i k a , l ,  h ,  I B:, I NI,, ~ I J )  = 1 (1.11) 

while all the other coefficients in a development of the type (1.10) vanish. If  we now 
take X = C: and apply it to I N,,, h,,) we obtain 

(1.12) 

In (1.12) the (hL1 C:l h,,) are now the matrix elements of the generator C: of the U(d)  
group with respect to the Gelfand states and their explicit expressions are well known 
(Gelfand and Zetlin 1950, Moshinsky 1968). The commutator in (1.12) can be evaluated 
using ( 1 . 2 ~ )  and thus it clearly gives rise to a linear combination of terms l I fS ,= ,  ( B i ) N : r .  
In this way we can get explicitly the coefficients 

( N ; 9  ' L l c ~ I N l J 9  ' j J ) '  (1.13) 

Now turning our attention to X = Bk' we see that 

(1.14) 

as the term Bk' I h,,) = 0. This is due to the fact that I h,,)  can be expressed as a polynomial 
in Cj, i < j ,  acting on the lowest weight state 1 h r d ) .  Using the commutation relation 
[Ci, Bk']  in (1.2d) we see that we can pass the Bk' through the C i  to have it act 
directly on 1 hid) where it gives zero from (1.4a). For the commutator in (1.14) we can 
use [ Bk', Bi] given by (1.2e) to introduce a C{ in the monomial expression and then 
move the C{ to the right using ( 1 . 2 ~ )  so that finally it acts on 1 h , )  in the way indicated 
in the last term in (1.12). By this procedure we could then get explicitly the coefficients 

(NL, hLIBk'IN,,, h,,). (1.15) 

Clearly the analysis indicated, while feasible, is very cumbersome, but fortunately, 
as was indicated in the earlier paper (Castaiios and Moshinsky 1987), it can be greatly 
simplified by using the Dyson boson realisation of sp(2d, R ) ,  as we shall show in the 
following section. 

2. The Dyson boson realisations and the matrix representation of the generators of 
s?W,  R )  

In previous references (Deenen and Quesne 1984, Moshinsky 1984) it was shown that 
the generators of sp(2d, R )  can be expressed in terms of those of the direct sum 

w[d(d + 1 ) / 2 1 0 u ( d )  (2.1) 
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where in (2.1) w and U stand, respectively, for the Weyl and unitary Lie algebras of 
the dimensions indicated. 

The generators of w[d (d  + 1)/2] are the creation j3; and annihilation piJ operators, 
with i, j = 1,2, .  . . , d, satisfying the commutation relations 

[P i . ,  P1,,,l = 0 ( 2 . 2 ~ )  

[ p  iJ, p i ' j j  = 0 (2.2b) 

(2.2c) 

where the appearance of two sets of Kronecker deltas in ( 2 . 2 ~ )  is due to the two indices 
and symmetric properties of the creation and annihilation operators, i.e. p', = p;i, 
p ii = p j i  

The generators of u(d)  will be denoted by y ! ;  i , j  = 1, .  . . , d, and they satisfy the 
standard commutation relations for unitary Lie algebras, i.e. 

(2.2d) 

[pv, p;.J = sj.sj.+ s;,s;l, 

[ yi ,  yi,'] = y; 's{ .  - y:,s:'. 
Furthermore w and U are independent so that 

[ p ; ,  y::] = [p!', ?{.'I =o. (2.2e) 

The realisation of the generators of sp(2d, R )  in terms of those of w[d(d + 1)/2] 
and u(d)  has been given in matrix notation (i.e. Bt = IlB~Il, etc) by Deenen and Quesne 
(1984) and Moshinsky (1984). Putting the results back in components we obtain 

( 2 . 3 ~ )  

(2.3b) 

B I' = p 7" + p y + p '"p In /3 " - ( d + 1 ) p I' ( 2 . 3 ~ )  

where repeated indices m, n are summed over their values, m, n = 1,2 , .  . . , d. 
It can be easily checked from the commutation rules (2.2) of pb, y ; ,  p" that 

Bh, C;l, B" defined by (2.3) satisfy the commutation rules (1.2) and, furthermore, that 
the right-hand side of ( 2 . 3 ~ )  is symmetric under exchange of i and j as required by 
B y  = BJi.  We note, though, that from (2.3) and the Hermitian properties 

( E L ) ' =  BiJ ( 2 . 4 ~ )  

(Cl)' = c; (2.4b) 
of the generators of sp(2d, R ) ,  we conclude that 

(P l )+#  P" (2.5) 
and thus we are dealing with what is known as a Dyson type (Deenen and Quesne 
1984, Castafios et a1 1985, 1986) boson realisation and not a Holstein-Primakoff one. 

We now define the boson states (Deenen and Quesne 1985) 

where I h,} is the direct product of the boson vacuum and Gelfand states associated 
with the u(d)  Lie algebra, so it has the properties 

( 2 . 7 ~ )  

(2.7b) 
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where the matrix elements appearing in (2.76) are those obtained by Gelfand and 
Zetlin (1950), which coincide with those on the right-hand side of (1.12). We thus 
conclude (Castafios and Moshinsky 1987) that applying the operators on the right-hand 
side of (2.3) to the states (2.6) should give exactly the same result as when we apply 
the generators ( 1 . 1 )  of sp(2d, R )  to the states (1.8) characterised by the irrep 
[ h & d .  . . h d d ]  of this Lie algebra. 

We thus have an alternative procedure to the one outlined in the previous section 
for deriving the matrix representation of the generators sp(2d, R )  associated with a 
given irrep of this Lie algebra. We note, though, that in the present analysis pb, pi' 
are creation and annihilation operators and thus from the commutation relations ( 2 . 2 ~ )  
we can interpret p V  as the differential operator (Deenen and Quesne 1982, 1984) 

a 
p = ( 1 + aij) 7. ap ij 

Furthermore from (2.2e), -yi will act only on the Ih,} in the way indicated in (2.7b). 
With the help of these considerations we proceed now to apply the right-hand side of 
(2.3) to (2.6) to obtain the matrix representation of the generators of sp(2d, R )  that 
we are looking for. 

We start with B:, = /3Ll where k s 1, and thus we obtain immediately 

BLIN~,, h i j } = I N i j + S i k a j / ,  h, )  (2.9) 
which coincides with the result in ( 1 . 1 1 ) .  Turning our attention to C :  we start with 
k < 1 and from (2.3b) and (2.8) we write 

On the right-hand side of (2.10) we decomposed the summation over m into several 
parts so as to be able to always write ph with i S j ,  both when it appears as a multiplying 
factor as well as when we are taking the derivative with respect to it. In this way the 
action of C : ,  with k < 1, on I Nu, h,} is perfectly definite, as in the latter there only 
appear p;  with i s j .  We thus get for k < 1 that 

k 

c: I Nij, hij}  = c I Nij - aimaj/ + a i m a j k ,  h i j )  
m = l  

1-1 

and thus obtain 

(2.12) 

(2.13) 
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Finally for k > 1 we can write 

(2.14) 

From the discussion (1.12) we see that (2.11), (2.13) and (2.15) provide the coefficients 
(1.13) required for the matrix representation of C:. 

We now turn our attention to Bk', k S I ,  of ( 2 . 3 ~ ) .  From the commutation relations 
(2.2) and definition (2.36) of C: we see that it can also be written as 

d d 

B k ' =  / 3 k m y i +  Ck,P"' 
m = l  m = l  

Applying it to I Nij, h,}  we then obtain 

1-1  

(2.16) 

(2.17) 

For the final expression we have to act with Ck on the kets in (2.17) which we can 
achieve with the help of (2.11), (2.13) or (2.15) depending on whether m < k, m = k 
or m > k. We shall not give the explicit expressions in this general case as they become 
rather long and, besides, we have not given the explicit expressions for ( h i 1  y :  I h i j )  
either. We shall correct both points in the next section where we discuss the explicit 
matrix representation for the generators of sp(6, R ) .  

From the analysis in (1.14) we conclude that (2.17) provides the coefficients (1.15) 
required for the matrix representation of Bk'. 
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h13 h 2 3  h33 

W l C : / h p  h I 2  A ; ,  ( h l l  

It is convenient to have an independent procedure to check the elements of the 
matrix representation of sp(2d, R )  that were derived in this section. For this purpose 
we introduce the second-order Casimir operator of sp(2d, R )  that has the form 
(Castafios and Moshinsky 1986) 

h 1 3 h 1 2 h 1 3 h 2 2 h 3 3 )  

c: (3.1) 
h l l  

d d d 

G2= B: /Bk’ -  C C : C f + ( d + l )  Cf: 
k . l = l  k , / =  1 k = l  

(2.18) 

where, with the help of (1.2), we easily check that G2 commutes with all the generators 
of sp(2d, R ) .  When applying G2 to the state I N,,, h,,) of (1.8) we can then pass through 
all the powers of Bb, C: that appear on it and have it act on the state of lowest weight 
I h r d )  of (1.4). As from ( 1 . 2 ~ )  we can also write 

G2= B: /Bk’ -2  C:Cf- (c:-Cf)-C(Cf:) ’+(d+l)CCf: (2.19) 

we see from (1.4) that the effect on )hid) of G2, and thus also on IN,,, A,,), is given by 

d 

k , / =  I k < /  k > l  k k 

(2.20) 
k I 

Thus by using explicitly the action on I Nu, h,j)  of each of the generators of sp(2d, R )  
appearing in the G2 of (2.18), we have to arrive at the expression (2.20), and therefore 
can check whether any mistakes were made in deriving the matrix representation of 
these generators. 

3. Explicit matrix representation of the generators of sp(6, R )  
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We then apply the 21 generators BL,, k G I ;  C : ;  Bk‘, k s I ;  k, I = 1 , 2 , 3 ,  of sp(6, R )  

( 3 . 3 a )  

to the states I NI,, h,) and from the discussion of the previous section obtain 

B:/ I Ny, hi,) = I Ni, + 8zkSj I ,  hy) k s  1. 

For C :  with k < I we obtain 

C : ~ N y , h ~ , ) = N 1 2 ~ ~ l l f 1 ,  N12-1,N13N22N23N33,h,,) 

(3 .3b )  

(3 .3c)  

( 3 . 3 d )  

(3 .3h)  
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(3.3i)  

(3 .3k)  
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From (3.3) we then obtain the coefficients ( l . l l ) ,  (1.13) and (1.15) in the matrix 
representation of the generators B i t ,  C: ,  Bk' of sp(6, R ) .  In the next section we apply 
these results for the determination of the matrix representation of Hamiltonians in the 
enveloping algebra of sp(6, R ) .  

4. Applications to the symplectic model of the nucleus 

In the symplectic model of the nucleus (Rosensteel and Rowe 1976,1977,1980, Filippov 
et a1 1973, 1981, Vanagas and Kalinauskas 1973, Vanagas et a1 1975, Vanagas 1977, 
1980, Weaver et a1 1976, Castafios et a1 1982, Moshinsky 1984, Suzuki and Hecht 
1986) the Hamiltonian H is in the enveloping algebra of sp(6, R )  and thus can be 
expressed as a polynomial in the generators BLl, C:, Bk', k, 1 = 1,2,3, that is Hermitian 
and invariant under rotation and time reflections (Chac6n et a1 1987). In the discussion 
of these Hamiltonians we analyse first the appearance of the orthogonal group O(3) 
in the picture and then the procedure for getting energy levels when the matrix 
representation of H is with respect to a non-orthonormal set of states such as I N,,, h,,). 

4.1.  The use of spherical components 

So far in sp(6, R )  we used the indices i ,  j or k, 1 that take the values 1,2,3. From the 
beginning we considered a notation that would allow us to interpret these indices in 
any kind of metric. In what follows we shall use a metric associated with spherical 
components that take the values 1,0, -1 related to 1,2,3 by the correspondence 

1 0 -1 

1 2  3 
J J  J . .  (4.1) 

When we are speaking of the generators of sp(6, R )  with the notation q = 1,0, -1 for 
the indices, we shall denote them with a bar above, while when we put them in the 
notation i = 1,2 ,3  we shall express them as before. The raising and lowering of the 
indices in spherical component notation is the standard one, e.g. 

The correspondence in the barred and unbarred notation is given by (4.1) and thus, 
for example, 

cy = c:. (4.3) 

The spherical components of angular momentum in terms of the generators of 
u(3) are given by (Moshinsky 1968) 

L,  = -(CY+ C'O1) = -( c:+ c:, ( 4 . 4 ~ )  
Lo= c;--c:; = c;-c: 
L1 = (e;+ PI) = (c:+ c:, 

with the Casimir operator of O(3) being 

(4.4b) 

(4.4c) 
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We note from (4.4b) that the states 1 NI,, h,) correspond to a definite eigenvalue M 
of the angular momentum projection Lo,  which from (3.3e, g) is given by 

hf = (2Nl I + N 1 2 -  N 2 3  - 2 N 3 3  + hi 1 + hi*+ h 2 2  - h i 3  - h 2 3  - h 3 3 ) .  (4.6) 

On the other hand the states 1 N,,  h,) are not eigenstates of the total angular momentum 
L 2 ,  though one can find linear combinations of them with this property, as will be 
outlined below. 

Note that the states I N,, h,) are also eigenstates of the operator 

x=@; + c:+ c;) =;(c:+ c:+ c:, (4.7) 

with eigenvalues 

(4.8) 

The Hamiltonians H in the enveloping algebra of sp(6, R )  will commute then with 
the components of the angular momentum, i.e. 

[Lp HI = 0 q = 1,0,  -1  (4.9) 

and besides they are Hermitian and invariant under time reflection. 

4.2. Energy levels for a non-orthonormal basis 

From (3.3) we can obtain the representation of H in the basis I NI,, hl,), i.e. 

H I N,? h,) = c I N ; ,  h L) ( N;, h ;  I H I N,, h,,) (4.10) 

and we shall proceed to show that the energy levels for this Hamiltonian are given by 
the secular equation (Moshinsky and Seligman 1971) 

Nb. ha, 

(4.1 1 )  

As the states 1 N,,, h,) are non-orthonormal we first show that the coefficients appearing 
on the right-hand side of (4.10) are matrix elements between the kets I NI,, hL, )  and 
dual ones I N ; ,  h ; ) ,  to be defined below, that are orthonormal to them. We then will 
see that we will get the same secular equation (4.11) if we had started with a complete 
orthonormalised set of states from the very beginning, which we could denote by the 
square bracket ket I N,,, h,,]. 

To simplify the discussion of the steps mentioned in the previous paragraph let us 
designate our states by the single quantum number v taking the values v = 1 , 2 , .  . . , n 
so that (4.10) can be rewritten 

H 1 U) = I v’) ( v ’  1 H 1 v ) .  
Y ’  

(4.12) 

The matrix of scalar products 

l l (v’ l  v)ll (4.13) 

which is clearly Hermitian, i.e. ( u ’ i  v ) = ( v l  U’)*, can be inverted to give a matrix we 
denote by 

l l (v ‘ l  v)ll. (4.14) 
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We now introduce a dual state which we denote by the round ket 1 v‘) and define it by 
I v’) = I v”) ( v ” /  v’). (4.15) 

Y ”  

Clearly then 

( v’ I v )  = ( v” I v’)*( v” I v) 
Y ”  

* 
= (E ( v  1 v”) ( v ” )  4) = 8”” 

”1’ 

(4.16) 

where we used the Hermitian property of ( v”I v) and the reciprocal relation between 
the matrices (4.13) and (4.14). We see then that the coefficients appearing on the 
right-hand side of (4.12) are matrix elements of H between an  angular ket 1 v) and a 
dual round bra ( v’I of this non-orthonormal system of states. 

We now turn our attention to the orthonormal set of states I v ]  that we can build 
from the angular kets I v). As II( v’I v)\l is Hermitian there is a unitary matrix 11 U,.,l/ 
that diagonalises it and  all the eigenvalues are real and  positive so we can designate 
them by A t ,  v = 1 , 2 , .  . . , n. We now define 

(4.17) 

(4.18) 

The square bracket kets I v ]  are then orthonormal and if we have the development 

(4.19) 

then the energy levels are clearly given by the secular equation 

det I\[ F’I H IF ]  - ES,,,JJ = 0. (4.20) 

We note, though, that by inverting equation (4.17) we obtain 

l v ) = z  UL,A,/F] (4.21) 
Y 

while a similar analysis using I / (  v ’ /  v)II gives 

I v ‘ ) = c  US.usA,.’IF’] 
f i ’  

(4.22) 

which can be checked by the fact that we have ( v‘ 1 v) = 6 ”. We see then immediately 
that the secular equation 

(4.23) 

gives the same values of E as (4.20), as from (4.21) and (4.22) the matrices appearing 
in (4.20) and (4.23) are related by a similarity transformation. 

In our argument we considered only a finite number of states, while 1 N,,, h,,) has 
an infinite number. We note though that the scalar products ( N b ,  hb 1 N,, h,,) vanish 
if they have different values M, N given in (4.6) and (4.8) in bra and ket and thus our 
discussion can be limited to subsets of 1 N, ,  h,,) with fixed N, M which from (4.6) and 
(4.8) are finite in number. 

The analysis given above then justifies our assertion that the energy levels are given 
by the secular equation (4.11) in which we have the matrix representation 

det 11 ( v’I H I v) - E6,  ” 1 1  = 0 
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(Nl,, hl, I H 1 N,), h,/) o f  the Hamiltonian H. The eigenstates of H can be obtained as 
linear combinations of 1 N,, ,  h,) in the process of diagonalising the matrix representation 
of H. Note incidentally that the overlaps of the states 1 N,,, h,) can be written as 

(4.24) 

and thus using the matrix representation of B" given by (3.3k)-(3.3p) we can find a 
recursion relation for evaluating these overlaps. This would allow us to use the 
eigenstates of H in the process of evaluating the expectation values of other operators 
such as the angular momentum L2 as well as those that determine the shape (Chacon 
et a1 1986). 

4.3. Hamiltonians in the enveloping algebra of sp(6, R )  up to second degree in the 
generators 
I f  we look at the 21 generators of sp(6, R)  we clearly see that those that are invariant 
under rotation are 

( 4 . 2 5 ~ )  

(4.256) 

( 4 . 2 5 ~ )  

I f  we require further that they should be Hermitian and invariant under time reflection 
(where the latter allows only real linear combinations or polynomials in the generators 
(Chacbn et a1 1986)) we obtain 

N ,  B t +  B. (4.26) 
Note that N, B+, B close under commutation, i.e. 

[A*, B'] = Bt 
[N ,  B ] = - B  
[ B, B+] = 2K 

( 4 . 2 7 ~ )  
(4.27b) 
( 4 . 2 7 ~ )  

and thus are a sp(2, R )  subalgebra of sp(6, R ) .  

we see that those that are invariant under rotation are 
Now turning our attention to the polynomials of second degree in the generators 

( 4 . 2 8 ~  ) 

(4.28b) 
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to which we have to add L2 of (4.5) and the squares and products of those appearing 
in (4.25). The Hermitian property and invariance under time reflection gives us the 
following possibilities for terms in H of second degree in the generators: 

I', A'+A, A'+A, K ,  BtB ,  B t 2 + B 2 ,  ( B ' + B ) K + N ( B ' + B ) ,  K 2 ,  L2.  (4.29) 

We note that among those appearing in (4.29) are Casimir operators of subalgebras 
of sp(6, R )  such as 

r, L2,  B'B-X(K-1)  (4.30) 

which are, respectively, those of u(3), o(3) and sp(2, R ) .  No similar identification was 
found for the other operators in (4.29) as Casimir operators of other subalgebras of 
sp(6, R )  such as, for example cm(3), are of third and fourth degree in the generators 
(Weaver et a1 1976). 

The matrix representation of the operators (4.26) and (4.29) can be found immedi- 
ately from (3.3) and thus the energy levels associated with a linear combination of 
them or of terms involving even higher powers of the generators, can be obtained from 
the secular equation (4.1 1). 

Other methods for obtaining computer programs for the generators of sp(6, R )  and 
the energy levels of Hamiltonians in the enveloping algebra have been given by Rowe 
(1985). 

5. Conclusion 

We have given in this paper the matrix representation of the generators of sp(2d, R )  
with respect to the states 1 N,,  h,) characterised by the irrep [hid,. . . , h d d ]  in the 
positive discrete series of this Lie algebra. The explicit form of these results for the 
case of sp(6, R )  allows us to consider the matrix representation of Hamiltonians in 
the enveloping algebra, and from it the energy levels of these Hamiltonians as well as 
the eigenstates expressed as linear combinations of the states I Nij ,  h i j ) .  Applications 
of these procedures to specific nuclei and interactions will be considered in other 
publications. 
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